https://doi.org/10.1140/epjc/s10052-024-12978-1
Regular Article - Experimental Physics
Reconstruction of electromagnetic showers in calorimeters using Deep Learning
IRFU, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
Received:
24
November
2023
Accepted:
2
June
2024
Published online:
25
June
2024
The precise reconstruction of properties of photons and electrons in modern high energy physics detectors, such as the CMS or ATLAS experiments, plays a crucial role in numerous physics results. Conventional geometrical algorithms are used to reconstruct the energy and position of these particles from the showers they induce in the electromagnetic calorimeter. Despite their accuracy and efficiency, these methods still suffer from several limitations, such as low-energy background and limited capacity to reconstruct close-by particles. This paper introduces an innovative machine-learning technique to measure the energy and position of photons and electrons based on convolutional and graph neural networks, taking the geometry of the CMS electromagnetic calorimeter as an example. The developed network demonstrates a significant improvement in resolution both for photon energy and position predictions compared to the algorithm used in CMS. Notably, one of the main advantages of this new approach is its ability to better distinguish between multiple close-by electromagnetic showers.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.