https://doi.org/10.1140/epjc/s10052-023-12178-3
Regular Article - Experimental Physics
SR-GAN for SR-gamma: super resolution of photon calorimeter images at collider experiments
1
RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
2
TU Dortmund University, Fakultät für Physik, Dortmund, Germany
c
florian.mausolf@rwth-aachen.de
Received:
24
August
2023
Accepted:
21
October
2023
Published online:
5
November
2023
We study single-image super-resolution algorithms for photons at collider experiments based on generative adversarial networks. We treat the energy depositions of simulated electromagnetic showers of photons and neutral-pion decays in a toy electromagnetic calorimeter as 2D images and we train super-resolution networks to generate images with an artificially increased resolution by a factor of four in each dimension. The generated images are able to reproduce features of the electromagnetic showers that are not obvious from the images at nominal resolution. Using the artificially-enhanced images for the reconstruction of shower-shape variables and of the position of the shower center results in significant improvements. We additionally investigate the utilization of the generated images as a pre-processing step for deep-learning photon-identification algorithms and observe improvements in the case of training samples of small size.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.