https://doi.org/10.1140/epjc/s10052-022-10258-4
Regular Article - Experimental Physics
Fast simulation of a high granularity calorimeter by generative adversarial networks
1
CERN, 1211, Geneva 23, Switzerland
2
University of Engineering and Technology Peshawar, Jamrud Road, Peshawar, Khyber Pakhtunkhwa, Pakistan
Received:
24
September
2021
Accepted:
25
March
2022
Published online:
29
April
2022
We present the 3DGAN for the simulation of a future high granularity calorimeter output as three-dimensional images. We prove the efficacy of Generative Adversarial Networks (GANs) for generating scientific data while retaining a high level of accuracy for diverse metrics across a large range of input variables. We demonstrate a successful application of the transfer learning concept: we train the network to simulate showers for electrons from a reduced range of primary energies, we then train further for a five times larger range (the model could not train for the larger range directly). The same concept is extended to generate showers for other particles depositing most of their energies in electromagnetic interactions (photons and neutral pions). In addition, the generation of charged pion showers is also explored, a more accurate effort would require additional data from other detectors not included in the scope of the current work. Our further contribution is a demonstration of using GAN-generated data for a practical application. We train a third-party network using GAN-generated data and prove that the response is similar to a network trained with data from the Monte Carlo simulation. The showers generated by GAN present accuracy within of Monte Carlo for a diverse range of physics features, with three orders of magnitude speedup. The speedup for both the training and inference can be further enhanced by distributed training.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3