https://doi.org/10.1140/epjc/s10052-024-12684-y
Regular Article - Theoretical Physics
Classical versus quantum features of the Berthelot cosmological model
School of Science, Jiangsu University of Science and Technology, 212100, Zhenjiang, China
Received:
8
January
2024
Accepted:
14
March
2024
Published online:
3
April
2024
In this paper, we compare and contrast the classical versus quantum dynamics of a cosmological model based on the literature (Modified) Berthelot equation of state for the description of the dark sector of the universe. At the classical background level we identify a Minkowski-like and a de Sitter-like equilibrium epochs, with the latter occurring only beyond a certain threshold for a parameter in the equation of state; at the classical perturbed level we find that this same parameter realizes a duality in the adiabatic speed of sound between the two equilibrium epochs. The quantum evolution of this model is studied in the context of quantum geometrodynamics by solving analytically the Wheeler–DeWitt equation in the Born–Oppenheimer approximation for the scalar field potentials about the two equilibrium epochs. We identify the phenomenon of quantum decoherence to arise at the same threshold which constitutes the bifurcation between the two equilibrium epochs at the classical level. We comment on the quantum modified power spectrum focusing on some consequences dealing with the formation of astrophysical structures within the Press–Schechter framework. Our paper is intended to scrutinize which classical features of a certain cosmological model are preserved at its quantum level, and under which assumptions.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.