https://doi.org/10.1140/epjc/s10052-023-12341-w
Regular Article - Theoretical Physics
Observational signatures of a static f(R) black hole with thin accretion disk
Departamento de Física, Universidad de Santiago de Chile, Avenida Víctor Jara 3493, 9170124, Estación Central, Santiago, Chile
Received:
31
August
2023
Accepted:
6
December
2023
Published online:
20
December
2023
In this study, we focus on a static spherically symmetric f(R) black hole spacetime characterized by a linear dark matter-related parameter. Our investigation delves into understanding the influence of different assumed values of this parameter on the observable characteristics of the black hole. To fulfill this task, we investigate the light deflection angles, which are inferred from direct analytical calculations of null geodesics. To examine the black hole’s properties further, we assume an optically thin accretion disk and explore various emission profiles. Additionally, we investigate the shadow cast by the illuminated black hole when affected by the disk. Furthermore, we simulate the brightness of an infalling spherical accretion in the context of silhouette imaging for the black hole. Our findings indicate that, except for some specific cases, the observed brightness of the accretion disk predominantly arises from direct emission, rather than lensing and photon rings. Moreover, we reveal that the linear dark parameter of the black hole significantly influences the shadow size and brightness. Our discussion covers both analytical and numerical approaches, and we utilize ray-tracing methods to produce accurate visualizations.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.