https://doi.org/10.1140/epjc/s10052-022-10925-6
Regular Article - Theoretical Physics
Optical features of rotating black hole with nonlinear electrodynamics
1
Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
2
Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
a drmzubair@cuilahore.edu.pk, mzubairkk@gmail.com
Received:
18
July
2022
Accepted:
14
October
2022
Published online:
27
October
2022
In this article, we considered the strong field approximation of nonlinear electrodynamics black hole and constructed its rotating counterpart by applying the modified Newman–Janis algorithm. The corresponding metric function in the strong field limit of the static black hole is identified in order to study the radius of photon sphere. However, the metric function for the rotating counterpart in the strong field limit is considered in order to study the horizon radius w.r.t spin parameter. We considered the Hamilton–Jacobi method to derive the geodesic equations for photon and constructed an orthonormal tetrad for deriving the equations for celestial coordinates in the observer’s sky. Shadows, distortions and energy emission rates are investigated and the results are compared for different values of nonlinear electrodynamics parameter, charge and spin. It is found that the presence of the nonlinear electrodynamics parameter affects the shape and size of the shadows and thus the distortion in the case of rotation. It is also found that the nonlinearity of electrodynamics diminishes the flatness in the shadow due to the effect of spin and other parameters.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.