https://doi.org/10.1140/epjc/s10052-022-10781-4
Reply
Towards a unified theory of the fundamental physical interactions based on the underlying geometric structure of the tangent bundle
Max Born Institute, Max Born Str. 2a, 12489, Berlin, Germany
Received:
8
July
2022
Accepted:
4
September
2022
Published online:
26
October
2022
This paper pursues the hypothesis that the tangent bundle (TB) with the central extended little groups of the SO(3,1) group as gauge group is the underlying geometric structure for a unified theory of the fundamental physical interactions. Based on this hypothesis as a first step, I recently presented a generalized theory of electroweak interaction (including hypothetical dark matter particles) (Herrmann in Eur Phys J C 79:779, 2019). The vertical Laplacian of the tangent bundle possesses the same form as the Hamiltonian of a 2D semiconductor quantum Hall system. This explains fractional charge quantization of quarks and the existence of lepton and quark families. As will be shown, the SU(3) color symmetry for strong interactions arises in the TB as an emergent symmetry similar to Chern–Simon gauge symmetries in quantum Hall systems. This predicts a signature of quark confinement as a universal large-scale property of the Chern–Simon fields and induces a new understanding of the vacuum as the ground state occupied by a condensate of quark–antiquark pairs. The gap for quark–antiquark pairing is calculated in the mean-field approximation, which allows a numerical estimation of the characteristic parameters of the vacuum such as its chemical potential, the quark condensation parameter and the vacuum energy. Note that a gauge theoretical understanding of gravity was previously achieved by considering the translation group T(3,1) in the TB as gauge group. Therefore, the theory presented here can be considered as a new type of unified theory for all known fundamental interactions linked with the geometrization program of physics.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.