https://doi.org/10.1140/epjc/s10052-021-09798-y
Regular Article - Experimental Physics
Coded masks for imaging of neutrino events
1
Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, via G. Saragat 1, 44122, Ferrara, Italy
2
Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, via G. Saragat 1, 44122, Ferrara, Italy
3
Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, via per Arnesano, 73100, Lecce, Italy
4
Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, via per Arnesano, 73100, Lecce, Italy
5
Dipartimento di Fisica, Università di Genova, via Dodecaneso 33, 16146, Genoa, Italy
6
Dipartimento di Fisica, Università di Bologna, viale C. Berti Pichat 6/2, 40127, Bologna, Italy
7
Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, viale C. Berti Pichat 6/2, 40127, Bologna, Italy
8
Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, via S. Sofia 62, 95125, Catania, Italy
9
Università di Milano-Bicocca, Piazza della Scienza 3, 20126, Milan, Italy
10
Istituto Nazionale Fisica Nucleare, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126, Milan, Italy
11
Istituto Nazionale Fisica Nucleare, Sezione di Genova, via Dodecaneso 33, 16146, Genoa, Italy
12
Istituto Nazionale Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133, Milan, Italy
13
Dipartimento di Ingegneria, Università di Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy
14
GNFM-INDAM, Città Universitaria, piazzale Aldo Moro 5, 00185, Rome, Italy
15
Dipartimento di Fisica, Università di Milano, via Celoria 16, 20133, Milan, Italy
16
Istituto Nazionale Fisica Nucleare, Laboratori Nazionale di Frascati, via E. Fermi 54, 00044, Frascati, Italy
17
Istituto Nazionale Fisica Nucleare, Sezione di Padova, Padua, Italy
18
Dipartimento di Fisica, Università di Milano, Milan, Italy
19
Dipartimento di Fisica, Università di Milano-Bicocca, Milan, Italy
20
CERN, Geneva, Switzerland
Received:
3
June
2021
Accepted:
2
November
2021
Published online:
17
November
2021
The capture of scintillation light emitted by liquid Argon and Xenon under molecular excitations by charged particles is still a challenging task. Here we present a first attempt to design a device able to have a sufficiently high photon detection efficiency, in order to reconstruct the path of ionizing particles. The study is based on the use of masks to encode the light signal combined with single-photon detectors, showing the capability to detect tracks over focal distances of about tens of centimeters. From numerical simulations it emerges that it is possible to successfully decode and recognize signals, even of rather complex topology, with a relatively limited number of acquisition channels. Thus, the main aim is to elucidate a proof of principle of a technology developed in very different contexts, but which has potential applications in liquid argon detectors that require a fast reading. The findings support us to think that such innovative technique could be very fruitful in a new generation of detectors devoted to neutrino physics.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3