https://doi.org/10.1140/epjc/s10052-021-09343-x
Regular Article - Theoretical Physics
Coupling of quantum gravitational field with Riemann and Ricci curvature tensors
1
Research Center for Theoretical Physics and Astrophysics, Institute of Physics, Silesian University in Opava, Bezručovo nám.13, 74601, Opava, Czech Republic
2
Department of Mathematics and Geosciences, University of Trieste, Via Valerio 12, 34127, Trieste, Italy
a
claudiocremaschini@gmail.com
Received:
15
May
2021
Accepted:
15
June
2021
Published online:
25
June
2021
The theoretical problem of establishing the coupling properties existing between the classical and quantum gravitational field with the Ricci and Riemann curvature tensors of General Relativity is addressed. The mathematical framework is provided by synchronous Hamilton variational principles and the validity of classical and quantum canonical Hamiltonian structures for the gravitational field dynamics. It is shown that, for the classical variational theory, manifestly-covariant Hamiltonian functions expressed by either the Ricci or Riemann tensors are both admitted, which yield the correct form of Einstein field equations. On the other hand, the corresponding realization of manifestly-covariant quantum gravity theories is not equivalent. The requirement imposed is that the Hamiltonian potential should represent a positive-definite quadratic form when performing a quadratic expansion around the equilibrium solution. This condition in fact warrants the existence of positive eigenvalues of the quantum Hamiltonian in the harmonic-oscillator representation, to be related to the graviton mass. Accordingly, it is shown that in the background of the deSitter space-time, only the Ricci tensor coupling is physically admitted. In contrast, the coupling of quantum gravitational field with the Riemann tensor generally prevents the possibility of achieving a Hamiltonian potential appropriate for the implementation of the quantum harmonic-oscillator solution.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3