2019 Impact factor 4.389
Particles and Fields


EPJ E Highlight - Uncovering liquid foams bubbly acoustics

Typical image of a bubble raft analysed for bubble-size determination. © J.Pierre et al.

First study to shows specific sounds’ speed and attenuation characteristics in liquid foam, opens the door to new type of sound proofing material

Liquid foams fascinate toddlers singing in a bubble bath. Physicists, too, have an interest in their acoustical properties. Borrowing from both porous material and foam science, Juliette Pierre from the Paris Diderot University, Paris, France and her colleagues studied liquid foams. They used an impedance tube to measure the velocity and attenuation of acoustic waves in liquid foams in a broad frequency range. The study published in EPJ E is a first in the literature. It could help in assessing any liquid foam’s bubble size or in designing the optimal foam structure for sound proofing.


EPJ D Highlight - Uniformity: the secret of better fusion ignition

Non-uniformity as a function of the power imbalance. © Temporal et al.

Fusion is one of the holy grails of energy production. Now, theoretical physicists have used simulations to investigate the uniformity of irradiation at the ignition stage of thermonuclear fusion reaction.

One of the ways to achieve thermonuclear fusion is through a controlled reaction between two light variants of hydrogen, called deuterium and tritium. Mauro Temporal, from the École Normale Supérieure Cachan, in France, and colleagues have made theoretical calculations indicating how best to improve the ignition stage of fusion reaction. Their approach, described in a paper published in EPJ D, involves increasing the uniformity of irradiation using high-power laser beams on the external shell of a spherical capsule containing a mix of deuterium and tritium.


EPJ E Highlight - Understanding the evolution of lungs through physical principles

Small bronchia, bronchioles (in white) and pulmonary arteries and veins in the human lung. Courtesy of E. R. Weibel

How fluid dynamics and transport shaped the structure of our lungs in the course of evolution.

Two French physicists, Bernard Sapoval and Marcel Filoche from École Polytechnique in Palaiseau, France, suggest in a study published in EPJ E how evolution has shaped our lungs through successive optimisations of physical parameters such as conservation of energy and speed of delivery.


EPJ B Colloquium - Conjugated polymer-wrapped carbon nanotubes: physical properties and device applications

s-SWNTs/PCBM heterojunction (Fig. 9c modified from Ref. [77] of the paper).

This EPJ B Colloquium presents an overview of the preparation method and physical properties of a new hybrid system consisting of single-walled carbon nanotubes (SWNTs) wrapped in conjugated polymers. The technique, which was first demonstrated in 2007, has attracted great interest owing to the high purity of the resulting semiconducting SWNTs and the possibility of applying them in electronic devices. Here, the authors review recent progress in the preparation of these nano-hybrids, their photophysical properties, and their applications in field-effect transistors and photovoltaic devices.


EPJ D Colloquium - Modelling low energy electron and positron tracks in biologically relevant media

An example of single electron tracks simulation in liquid water.

This EPJD colloquium describes an approach whereby the effect of low and intermediate energy (0-100 eV) electrons and positrons can be incorporated into radiation damage models, in particular the deceleration of these particles in biologically-relevant materials (water and representative biomolecules). At the heart of the modelling procedure is a C++ computer program called Low Energy Particle Track Simulation (LEPTS), which is compatible with commonly available general purpose Monte Carlo packages. Input parameters are carefully selected from theoretical and experimental cross-section data and energy loss distribution functions.


EPJ E Highlight - Greater desertification control using sand trap simulations

Spatial distribution of sand particles in the test straw checkerboard barrier.

A new simulation will help improve artificial sand-control measures designed to help combat desertification by identifying their weaknesses

In the fight against desertification, so-called straw checkerboard barriers (SCB), consisting of half -exposed criss-crossing rows of straw of wheat, rice, reeds, and other plants, play a significant role. The trouble is that our understanding of the laws governing wind-sand movement in SCB and their surrounding area is insufficient. Now, Ning Huang and colleagues from Lanzhou University in China, have performed a numerical simulation of the sand movement inside the SCB, described in a paper just published in EPJ E. Their country is particularly affected by desertification, which affects 18% of its territory. The results will help us to understand sand fixation mechanisms that are relevant for sandstorm and land-desertification control.


EPJ B Highlight - Green photon beams more agile than optical tweezers

Charge-density computation of butane molecules.

A new manipulation tool exploits the fact that when light interacts with matter, it creates a force that produces material properties in macromolecules and biological cells

Romanian scientists have discovered a novel approach for the optical manipulation of macromolecules and biological cells. Their findings stem from challenging the idea that visible light would induce no physical effect on them since it is not absorbed. Instead, Sorin Comorosan, working as physicist at the National Institute for Physics and Nuclear Engineering based in Magurele, Romania, and as a biologist at the Fundeni Clinical Institute, Bucharest, Romania, and colleagues had the idea to use green photon beams. With them, it is possible to perform optical manipulation of macrostructures, such as biological proteins, with greater precision than with optical tweezers made from focused laser beams.


EPJ A Highlight - Prompt x-rays emitted in neutron-induced fission help unveil the evolution of fission fragment charge yields as a function of incident neutron energy

Charge distribution determined from the x-ray yield measurements (symbols) for different incident neutron intervals: threshold to 6MeV ~3MeV, from 6 to 11MeV ~8MeV, from 11 to 20MeV ~14MeV, from 20 to 50MeV ~32MeV and from 50to 400MeV ~180MeV. For more detail see text.

Nuclear fission is accompanied by the prompt emission of neutrons, gamma rays and x-rays. It has been known since the sixties that fission prompt x-rays originate essentially as a consequence of the internal conversions occurring in the prompt gamma deexcitation cascades of fission fragments.

This work presents for the first time a measurement of the prompt fission x-ray yields in 238U(n,f) for average incident neutron energies ranging from 3 to 200 MeV. These results provide new information on fission fragment deexcitation and allow testing the current knowledge of fission fragment nuclear structure. These results provide also a means to investigate the evolution, as a function of incident neutron energy, of fission fragment charge yields and elemental prompt x-ray emission probabilities.


EPJ D Highlight - Pulsating dust cloud dynamics modelled

Different phases of a self-gravitational potential.

New research outlines a new design of spatio-temporal models of astrophysical plasmas

The birth of stars is an event that eludes intuitive understanding. It is the collapse of dense molecular clouds under their own weight that offers the best sites of star formation. Now, Pralay Kumar Karmakar from the Department of Physics at Tezpur University, Assam province, India, and his student have proposed a new model for investigating molecular clouds fluctuations at sites of star formation and thus study their pulsational dynamics, in a paper just published in EPJ D.


EPJ B Highlight - Atom-based analogues to electronic devices

Spectral functions of the first (left panel) and the second (right panel) quantum dot.

New research gives a theoretical explanation as to how transport of single atoms is made possible through a chain of quantum dots

Scientists have pushed back the boundaries of atom-based transport, creating a current by charac-terising the many-body effects in the transport of the atoms along a periodic lattice. This work by Anton Ivanov and colleagues from the Institute for Theoretical Physics, at the University of Heidel-berg, Germany, adopted a new analytical approach before comparing it to approximate numerical simulations, and is reported in a paper recently published in EPJ B.


L. Baudis, G. Dissertori, K. Skenderis and D. Zeppenfeld

Deputy Editors-in-Chief
D. J. Schwarz

We feel that the inputs from the reviewing process have been very enriching and have significantly improved the quality of our discussion.
Best regards.


ISSN: 1434-6044 (Print Edition)
ISSN: 1434-6052 (Electronic Edition)

© Società Italiana di Fisica and