2018 Impact factor 4.843
Particles and Fields

EPJ E Colloquium: Adhesion induced pattern formation in constrained soft films

Formation of an interfacial pattern between a thin film of soft gel and a rigid glass plate that also shows the motion of bubbles.
© Chaudhury et al.

A hydrostatically-stressed soft elastic film responds by developing a morphological instability, the wavelength of which is dictated by minimisation of the surface and elastic strain energies of the film. For a single film, the wavelength of this transition is entirely dependent on the film's thickness, however in the case of two contacting films a co-operative energy minimisation dictates that the wavelength depends on both the elastic moduli and the thicknesses of the two films.

In addition, the wavelength can depend on the material properties of the film if its surface tension has a pronounced effect when compared to its elasticity. When such a confined film is subjected to a continually-increasing normal displacement, the morphological patterns evolve into cracks which, in turn, govern the adhesive fracture behaviour of the interface. While, in general, the film thickness provides the relevant length scale underlying the well-known Griffith-Kendall criterion of debonding of a rigid disc from a confined film, it is modified non-trivially by the elasto-capillary number for an ultra-soft film.

Depending on the degree of confinement and the spatial distribution of the external stress, various analogues of the canonical instability patterns found in liquid systems can be reproduced in confined thin elastic films.

L. Baudis, G. Dissertori, K. Skenderis and D. Zeppenfeld
The author would like to thank two anonymous referees for pointing out several shortcomings in a previous version of this paper and for suggestions to improve its clarity.

J. H. Field

ISSN: 1434-6044 (Print Edition)
ISSN: 1434-6052 (Electronic Edition)

© Società Italiana di Fisica and