2018 Impact factor 4.843
Particles and Fields

EPJ E Colloquium: Self-consistent field theory of multicomponent wormlike-copolymer melts

A linear, a 3-arm star, and a sidechain copolymer segment.

The self-consistent field theory (FCFT) is a convenient theoretical tool to describe the ordered structures of copolymer melts. It supports the current understanding of many polymeric systems. In a new EPJ E Colloquium Ying Jiang and colleagues showcase the versatility and power of the wormlike-chain formalism for calculating the microphase-separated crystallographic structures of multi-component wormlike polymers.

The approach is based on a self-consistent field theory of wormlike polymers, where the persistence length of each component is an important parameter. The article’s emphasis is on an analysis of the minimum number of independent parameters required to specify a problem for a system that includes Flory-Huggins and Maier-Saupe energies. The success of this formalism in capturing the structure of basic polymer systems is exemplifies through its application to AB homopolymer interfaces, AB diblock copolymers, and rod-coil copolymers.

With this Colloquium the authors wish to inspire and encourage further structural determinations of other wormlike polymer mixtures, in which the polymer semiflexibility is considered a tuning parameter.

L. Baudis, G. Dissertori, K. Skenderis and D. Zeppenfeld
The author would like to thank two anonymous referees for pointing out several shortcomings in a previous version of this paper and for suggestions to improve its clarity.

J. H. Field

ISSN: 1434-6044 (Print Edition)
ISSN: 1434-6052 (Electronic Edition)

© Società Italiana di Fisica and