2020 Impact factor 4.590
Particles and Fields

EPJ D - Electrons go unperturbed in a matter-wave interferometer

Photodetachment microscopy provides the best electron affinity measurements on atoms and molecules. Photodetachment of a negative ion produces a nearly free electron, hardly perturbed by the residual atomic core. Applying an external electric field does not only concentrate the photoelectron current in a round spot, but also gives rise to an electron interference pattern, due to the existence of a pair of possible trajectories bound to every point of the spot. This very fundamental matter-wave interferometer produces extraordinarily robust interferograms. Although magnetic fields, even in the sub-microT range, causes fluxes between the interfering trajectories that can be huge compared to the quantum unit of magnetic flux, a magnetic perturbation of the system appears to only produce a global deviation of the spot, without any modification of the interference pattern. The main result of the recent paper published in EPJ D by Chaibi et al. is that even in higher magnetic fields (typically 100 microT) the electron interference phase, or number of interference rings, remain unperturbed. This comfirms photodetachment as a highly accurate method for electron spectrometry and electron affinity measurements.

To read the full paper ‘Effect of a magnetic field in photodetachment microscopy’ by W. Chaibi et al., Eur. Phys. J. D (2010) click here

Editors-in-Chief
G. Dissertori, J. Monroe, K. Skenderis and D. Zeppenfeld

Deputy Editors-in-Chief
D. J. Schwarz

I am very grateful for the great professionality and efforts that all the staff of the EJPC makes in order to attend all the necessities of the authors.

Diego Julio Cirilo-Lombardo

ISSN: 1434-6052 (Electronic Edition)

© Società Italiana di Fisica and
Springer-Verlag