2017 Impact factor 5.172
Particles and Fields

EPJ B Colloquium - Why heavy doping makes ultrafast plasmonic semiconductors

This EPJB Colloquium reviews the pioneering studies of plasmon resonance in heavily doped semiconductor thin films. It also reports the chemical synthesis and structural properties of heavily doped semiconductor nanocrystals. Their linear plasmonic response (under excitation with weak continuous-wave optical fields) is illustrated both theoretically and experimentally. Finally, the authors review the most recent results on the transient (i.e. nonlinear) ultrafast plasmonic features exhibited by chalcogenide nanocrystals under excitation with ultra-fast optical pulses, including a “gold-like” theoretical model. This model turns out to provide sufficient insights into the first experiments on heavily-doped plasmonic nanoparticles.

Plasmonics in heavily-doped semiconductor nanocrystals. Francesco Scotognella et al., Eur. Phys. J. B (2013) 86: 154, DOI: 10.1140/epjb/e2013-40039-x

L. Baudis, G. Dissertori, K. Skenderis and D. Zeppenfeld
We feel that the inputs from the reviewing process have been very enriching and have significantly improved the quality of our discussion.
Best regards.


ISSN: 1434-6044 (Print Edition)
ISSN: 1434-6052 (Electronic Edition)

© Società Italiana di Fisica and