2017 Impact factor 5.172
Particles and Fields

The unusual electronic and transport properties of graphene-based nanostructures reviewed in a Colloqium paper by Dubois, Zanolli, Declerck, and Charlier in EPJ B

Graphene-based nanostructures are expected to display the extraordinary electronic, thermal and mechanical properties and are thus promising candidates for a wide range applications and opening alternatives to present silicon-based electronics devices. This paper reviews the electronic and quantum transport properties of these carbon nanomaterials in which confinement effects are playing a crucial role. After reviewing the transport properties of defect-free systems, doping and topological defects are also proposed as strategy to tailor quantum conductance in these materials.

L. Baudis, G. Dissertori, K. Skenderis and D. Zeppenfeld
The author would like to thank two anonymous referees for pointing out several shortcomings in a previous version of this paper and for suggestions to improve its clarity.

J. H. Field

ISSN: 1434-6044 (Print Edition)
ISSN: 1434-6052 (Electronic Edition)

© Società Italiana di Fisica and