2019 Impact factor 4.389
Particles and Fields

EPJ B Colloquium - Ergodicity and large deviations in physical systems with stochastic dynamics

In ergodic physical systems, time-averaged quantities converge (for large times) to their ensemble-averaged values. Large deviation theory describes rare events where these time averages differ significantly from the corresponding ensemble averages. It allows estimation of the probabilities of these events, and their mechanisms, and has been applied to a wide range of physical systems, including exclusion processes, glassy materials, models of heat transport, proteins, climate models, and non-equilibrium quantum systems.

In a new Colloquium article published in EPJB, Dr Robert Jack (University of Cambridge, UK) outlines the application of large deviation theory to these systems, where it has yielded fresh insights into entropy production, current fluctuations, metastability, transport processes, and glassy behaviour. The article covers some recent developments and identifies general principles, discussing a selection of dynamical phase transitions, and highlighting some connections between large-deviation theory and optimal control theory.

Robert L. Jack (2020),
Ergodicity and large deviations in physical systems with stochastic dynamics
European Physical Journal B 93:74, DOI: 10.1140/epjb//e2020-100605-3

L. Baudis, G. Dissertori, K. Skenderis and D. Zeppenfeld

Deputy Editors-in-Chief
D. J. Schwarz

We are grateful to the Editor, to the Referee for careful reading of the manuscript, for the interesting and useful remarks, which allow us to improve the text and clarify some of the results.

Evgenij Martynov (Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine) and Basarab Nicolescu (Babes-Bolyai University, Cluj-Napoca, Romania)

ISSN: 1434-6044 (Print Edition)
ISSN: 1434-6052 (Electronic Edition)

© Società Italiana di Fisica and