https://doi.org/10.1140/epjc/s10052-025-13790-1
Regular Article - Theoretical Physics
Metric-affine cosmological models and the inverse problem of the calculus of variations. Part II: Variational bootstrapping of the
CDM model
1
Department of Mathematics and Computer Science, Transilvania University of Brasov, Brasov, Romania
2
Nuclear and Subnuclear Physics, University of Mons, Mons, Belgium
3
Lepage Research Institute, Pres̆ov, Slovakia
Received:
14
November
2024
Accepted:
1
January
2025
Published online:
27
January
2025
The method of variational bootstrapping, based on canonical variational completion, allows one to construct a Lagrangian for a physical theory depending on two sets of field variables, starting from a guess of the field equations for only one such set. This setup is particularly appealing for the construction of modified theories of gravity, since one can take lessons from GR for an “educated guess” of the metric field equations; the field equations for the other fields are then fixed by the obtained Lagrangian (up to terms that are completely independent from the metric tensor). In the present paper, we apply variational bootstrapping to determine metric-affine models which are, in a variational sense, closest to the CDM model of cosmology. Starting from an “educated guess” that formally resembles the Einstein field equations with a cosmological “constant” (actually, a scalar function built from the metric and the connection) and a dark matter term, the method then allows to find “corrected” metric equations and to “bootstrap” the connection field equations. Lagrangians obtained via this method, though imposing some restricting criteria, still encompass a wide variety of metric-affine models. In particular, they allow for a subclass of quadratic metric-affine theories restricted to linear terms in the curvature tensor.
© The Author(s) 2025
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.