https://doi.org/10.1140/epjc/s10052-024-13281-9
Regular Article - Theoretical Physics
Minimal-length quantum field theory: a first-principle approach
CNR-INO, Istituto Nazionale di Ottica, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
Received:
28
July
2024
Accepted:
20
August
2024
Published online:
5
September
2024
Phenomenological models of quantum gravity often consider the existence of some form of minimal length. This feature is commonly described in the context of quantum mechanics and using the corresponding formalism and techniques. Although few attempts at a quantum field-theoretical description of a minimal length has been proposed, they are rather the exception and there is no general agreement on the correct one. Here, using the quantum-mechanical model as a guidance, we propose a first-principle definition of a quantum field theory including a minimal length. Specifically, we propose a two-step procedure, by first describing the quantum-mechanical models as a classical field theory and subsequently quantizing it. We are thus able to provide a foundation for further exploration of the implications of a minimal length in quantum field theory.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.