https://doi.org/10.1140/epjc/s10052-021-09168-8
Letter
Discreteness of space from anisotropic spin–orbit interaction
1
Department of Physics, Faculty of Sciences, Benha University, 13518, Benha, Egypt
2
University of Tennessee, Knoxville, USA
Received:
3
February
2021
Accepted:
20
April
2021
Published online:
26
April
2021
Various approaches to Quantum Gravity suggest an existence of a minimal measurable length. The cost to have such minimal length could be modified uncertainty principle, modified dispersion relation, non-commutative geometry or breaking of continuous Lorentz symmetry. In this paper, we propose that minimal length can be obtained naturally through spin–orbit interaction. We consider Dresselhaus anisotropic spin–orbit interaction as the perturbative Hamiltonian. When applied to a particle, it implies that the space, which seizes this particle, should be quantized in terms of units that depend on particle’s mass. This suggests that all measurable lengths in the space are quantized in units depending on existent mass and the Dresselhaus coupling constant. On one side, this indicates a breakdown of the space continuum picture near the scale of tabletop experiments, and on the other side, it proposes that spin–orbit interaction is a possible quantum gravity effect at low energy scale that leads naturally to space quantization.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3