https://doi.org/10.1140/epjc/s10052-024-12865-9
Regular Article - Experimental Physics
Demonstration of event position reconstruction based on diffusion in the NEXT-white detector
1
Department of Physics, Harvard University, 02138, Cambridge, MA, USA
2
Department of Physics, University of Texas at Arlington, 76019, Arlington, TX, USA
3
Department of Physics and Astronomy, Manchester University, M13 9PL, Manchester, UK
4
Argonne National Laboratory, 60439, Argonne, IL, USA
5
Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC-Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
6
Department of Organic Chemistry I, University of the Basque Country (UPV/EHU), Centro de Innovación en Química Avanzada (ORFEO-CINQA), 20018, San Sebastián/Donostia, Spain
7
Department of Applied Chemistry, Universidad del Pais Vasco (UPV/EHU), Manuel de Lardizabal 3, 20018, San Sebastián/Donostia, Spain
8
Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 8410501, Beer-Sheva, Israel
9
Pacific Northwest National Laboratory (PNNL), 99352, Richland, WA, USA
10
II. Physikalisches Institut, Justus-Liebig-Universitat Giessen, Giessen, Germany
11
Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
12
Donostia International Physics Center, BERC Basque Excellence Research Centre, Manuel de Lardizabal 4, 20018, San Sebastián/Donostia, Spain
13
Laboratorio Subterráneo de Canfranc, Paseo de los Ayerbe s/n, 22880, Canfranc Estación, Spain
14
LIP, Department of Physics, University of Coimbra, 3004-516, Coimbra, Portugal
15
Centro de Física de Materiales (CFM), CSIC and Universidad del Pais Vasco (UPV/EHU), Manuel de Lardizabal 5, 20018, San Sebastián/Donostia, Spain
16
Instituto de Física Corpuscular (IFIC), CSIC and Universitat de València, Calle Catedrático José Beltrán, 2, 46980, Paterna, Spain
17
Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Calle Pedro Cerbuna, 12, 50009, Zaragoza, Spain
18
Instituto Gallego de Física de Altas Energías, Univ. de Santiago de Compostela, Campus sur, Rúa Xosé María Suárez Núñez, s/n, 15782, Santiago de Compostela, Spain
19
LIBPhys, Physics Department, University of Coimbra, Rua Larga, 3004-516, Coimbra, Portugal
20
Ikerbasque (Basque Foundation for Science), 48009, Bilbao, Spain
21
Department of Chemistry and Biochemistry, University of Texas at Arlington, 76019, Arlington, TX, USA
22
Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, 94720, Berkeley, CA, USA
23
Department of Physics and Astronomy, Iowa State University, 50011-3160, Ames, IA, USA
24
Hebrew University, Edmond J. Safra Campus, 9190401, Jerusalem, Israel
25
Departamento de Física Teórica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
26
Fermi National Accelerator Laboratory, 60510, Batavia, IL, USA
27
Escola Politècnica Superior, Universitat de Girona, Av. Montilivi, s/n, 17071, Girona, Spain
28
Department of Physics and Astronomy, Texas A &M University, 77843-4242, College Station, TX, USA
29
Weizmann Institute of Science, Rehovot, Israel
Received:
19
February
2024
Accepted:
29
April
2024
Published online:
21
May
2024
Noble element time projection chambers are a leading technology for rare event detection in physics, such as for dark matter and neutrinoless double beta decay searches. Time projection chambers typically assign event position in the drift direction using the relative timing of prompt scintillation and delayed charge collection signals, allowing for reconstruction of an absolute position in the drift direction. In this paper, alternate methods for assigning event drift distance via quantification of electron diffusion in a pure high pressure xenon gas time projection chamber are explored. Data from the NEXT-White detector demonstrate the ability to achieve good position assignment accuracy for both high- and low-energy events. Using point-like energy deposits from Kr calibration electron captures (
keV), the position of origin of low-energy events is determined to 2 cm precision with bias
mm. A convolutional neural network approach is then used to quantify diffusion for longer tracks (
MeV), from radiogenic electrons, yielding a precision of 3 cm on the event barycenter. The precision achieved with these methods indicates the feasibility energy calibrations of better than 1% FWHM at Q
in pure xenon, as well as the potential for event fiducialization in large future detectors using an alternate method that does not rely on primary scintillation.
J. T. White: Deceased.
J. J. Gómez-Cadenas: NEXT Spokesperson.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.