https://doi.org/10.1140/epjc/s10052-023-12138-x
Regular Article - Theoretical Physics
Cosmological solutions of chameleon scalar field model
1
Department of Physics, Faculty of Science, Malayer University, Malayer, Iran
2
Department of Physics, Shahid Beheshti University, Evin, 19839, Tehran, Iran
a
r.zaregonbadi@malayeru.ac.ir
Received:
24
July
2023
Accepted:
13
October
2023
Published online:
30
October
2023
We investigate cosmological solutions of the chameleon model with a non-minimal coupling between the matter and the scalar field through a conformal factor with gravitational strength. By considering the spatially flat FLRW metric and the matter density as a non-relativistic perfect fluid, we focus on the matter-dominated phase and the late-time accelerated-phase of the universe. In this regard, we manipulate and scrutinize the related field equations for the density parameters of the matter and the scalar fields with respect to the e-folding. Since the scalar field fluctuations depend on the background and the field equations become highly non-linear, we probe and derive the governing equations in the context of various cases of the relation between the kinetic and potential energies of the chameleon scalar field, or indeed, for some specific cases of the scalar field equation of state parameter. Thereupon, we schematically plot those density parameters for two different values of the chameleon non-minimal coupling parameter, and discuss the results. In the both considered phases, we specify that, when the kinetic energy of the chameleon scalar field is much less than its potential energy (i.e., when the scalar field equation of state parameter is ), the behavior of the chameleon model is similar to the model. Such compatibility suggests that the chameleon model is phenomenologically viable and can be tested with the observational data.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.