https://doi.org/10.1140/epjc/s10052-023-12045-1
Regular Article - Theoretical Physics
Cosmogenesis as symmetry transformation
1
Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451, Szczecin, Poland
2
Copernicus Center for Interdisciplinary Studies, Szczepańska 1/5, 31-011, Kraków, Poland
3
Institute of Mathematics, Physics and Chemistry, Maritime University of Szczecin, Wały Chrobrego 1-2, 70-500, Szczecin, Poland
Received:
7
September
2023
Accepted:
14
September
2023
Published online:
28
September
2023
We consider the quantized bi-scalar gravity, which may serve as a locally Lorentz invariant cosmological model with varying speed of light and varying gravitational constant. The equation governing the quantum regime for the case of homogeneous and isotropic cosmological setup is a Dirac-like equation which replaces the standard Wheeler–DeWitt equation. We show that particular cosmogenesis may occur as a result of the action of the symmetry transformation which due to Wigner’s theorem can either be unitary or antiunitary. We demonstrate that the transition from the pre-big-bang contraction to the post-big-bang expansion – a scenario that also occurs in string quantum cosmologies – can be attributed to the action of charge conjugation, which belongs to the class of antiunitary transformations. We also demonstrate that the emergence of the two classical expanding post-big-bang universe–antiuniverse pairs, each with opposite spin projections, can be understood as being triggered by the action of a unitary transformation resembling the Hadamard gate.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.