https://doi.org/10.1140/epjc/s10052-021-09666-9
Regular Article - Theoretical Physics
Ricci cosmology in light of astronomical data
1
Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451, Szczecin, Poland
2
National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400, Otwock, Poland
3
Copernicus Center for Interdisciplinary Studies, Szczepańska 1/5, 31-011, Kraków, Poland
b
mariusz.dabrowski@usz.edu.pl
Received:
7
July
2021
Accepted:
16
September
2021
Published online:
7
October
2021
Recently, a new cosmological framework, dubbed Ricci cosmology, has been proposed. Such a framework has emerged from the study of relativistic dynamics of fluids out of equilibrium in a curved background and is characterised by the presence of deviations from the equilibrium pressure in the energy–momentum tensor which are due to linear terms in the Ricci scalar and the Ricci tensor. The coefficients in front of such terms are called the second order transport coefficients and they parametrise the fluid response to the pressure terms arising from the spacetime curvature. Under the preliminary assumption that the second order transport coefficients are constant, we find the simplest solution of Ricci cosmology in which the presence of pressure terms causes a departure from the perfect fluid redshift scaling for matter components filling the Universe. In order to test the viability of this solution, we make four different ansätze on the transport coefficients, giving rise to four different cases of our model. On the physical ground of the second law of thermodynamics for fluids with non-equilibrium pressure, we find some theoretical bounds (priors) on the parameters of the models. Our main concern is then the check of each of the case against the standard set of cosmological data in order to obtain the observational bounds on the second order transport coefficients. We find those bounds also realising that Ricci cosmology model is compatible with CDM cosmology for all the ansätze.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3