https://doi.org/10.1140/epjc/s10052-023-11668-8
Regular Article - Theoretical Physics
Charge transport properties in a novel holographic quantum phase transition model
1
Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, 225009, Yangzhou, People’s Republic of China
2
Department of Physics and Siyuan Laboratory, Jinan University, 510632, Guangzhou, People’s Republic of China
Received:
31
January
2023
Accepted:
30
May
2023
Published online:
19
June
2023
We investigate the features of charge transport in a novel holographic quantum phase transition (QPT) model with two metallic phases: normal metallic and novel metallic. The scaling behaviors of direct current (DC) resistivity and thermal conductivity at low temperatures in both metallic phases are numerically computed. The numerical results and the analytical ones governed by the near horizon geometry agree perfectly. Then, the features of low-frequency alternating current (AC) electric conductivity are systematically investigated. A remarkable characteristic is that the normal metallic phase is a coherent system, whereas the novel metallic phase is an incoherent system with non-vanishing intrinsic conductivity. Especially, in the novel metallic phase, the incoherent behavior becomes stronger when the strength of the momentum dissipation enhances.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.