https://doi.org/10.1140/epjc/s10052-023-12226-y
Regular Article - Theoretical Physics
Diagnosing quantum phase transitions via holographic entanglement entropy at finite temperature
1
Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, 225009, Yangzhou, People’s Republic of China
2
Department of Physics and Siyuan Laboratory, Jinan University, 510632, Guangzhou, People’s Republic of China
Received:
16
August
2023
Accepted:
3
November
2023
Published online:
16
November
2023
We investigate the behavior of the holographic entanglement entropy (HEE) in proximity to the quantum critical points (QCPs) of the metal-insulator transition (MIT) in the Einstein–Maxwell-dilaton-axions (EMDA) model. Since both the metallic phase and the insulating phase are characterized by distinct IR geometries, we used to expect that the HEE itself characterizes the QCPs. This expectation is validated for certain cases, however, we make a noteworthy observation: for a specific scenario where , with
as a coupling parameter, it is not the HEE itself but rather the second-order derivative of HEE with respect to the lattice wave number that effectively characterizes quantum phase transitions (QPTs). This distinction arises due to the influence of thermal effects. These findings present novel insights into the interplay between HEE and QPTs in the context of the MIT, and have significant implications for studying QPTs at finite temperatures.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.