https://doi.org/10.1140/epjc/s10052-023-11431-z
Regular Article - Theoretical Physics
Observational appearances of magnetically charged black holes in Born–Infeld electrodynamics
1
Center for Theoretical Physics, College of Physics, Sichuan University, 610065, Chengdu, China
2
Department of Astronomy, Beijing Normal University, 100875, Beijing, China
Received:
20
December
2022
Accepted:
24
March
2023
Published online:
5
April
2023
In this paper, we investigate the observational appearances of magnetically charged black holes in Born–Infeld (BI) electrodynamics. We examine the effects of the magnetic charge and the BI parameter on the geodesics with different impact parameters. Using the backward ray tracing method, we investigate how spherically symmetric accretions interact with black hole shadows and photon spheres. The shadows of infalling accretion are darker than that of static ones. Moreover, the radius of the photon sphere is an intrinsic property of the spacetime independent of accretions. We then study how the thin disk models affect the black hole shadows. After obtaining the transfer functions, we divide photons emitted from the thin disk into three categories: direct emission, lens ring, and photon ring. Applying three emission models, we find that the width of the shadow is dominated by the direct emission, the photon ring and the lens ring can hardly be identified by changing the emission models.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.