https://doi.org/10.1140/epjc/s10052-023-11347-8
Regular Article - Experimental Physics
Data driven background estimation in HEP using generative adversarial networks
IRFU, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
Received:
9
December
2022
Accepted:
17
February
2023
Published online:
27
March
2023
Data-driven methods are widely used to overcome shortcomings of Monte Carlo simulations (lack of statistics, mismodeling of processes, etc.) in experimental high energy physics. A precise description of background processes is crucial to reach the optimal sensitivity for a measurement. However, the selection of the control region used to describe the background process in a region of interest biases the distribution of some physics observables, rendering the use of such observables impossible in a physics analysis. Rather than discarding these events and/or observables, we propose a novel method to generate physics objects compatible with the region of interest and properly describing the correlations with the rest of the event properties. We use a generative adversarial network (GAN) for this task, as GANs are among the best generator models for various applications. We illustrate the method by generating a new misidentified photon for the background of the
analysis at the CERN LHC, and demonstrate that this GAN generator is able to produce a coherent object correlated with the different properties of the rest of the event.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.