https://doi.org/10.1140/epjc/s10052-022-10632-2
Regular Article - Theoretical Physics
Exploring phase space with nested sampling
1
Cavendish Laboratory and Kavli Institute for Cosmology, University of Cambridge, JJ Thomson Avenue, CB3 0HE, Cambridge, UK
2
Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
Received:
17
May
2022
Accepted:
23
July
2022
Published online:
5
August
2022
We present the first application of a Nested Sampling algorithm to explore the high-dimensional phase space of particle collision events. We describe the adaptation of the algorithm, designed to perform Bayesian inference computations, to the integration of partonic scattering cross sections and the generation of individual events distributed according to the corresponding squared matrix element. As a first concrete example we consider gluon scattering processes into 3-, 4- and 5-gluon final states and compare the performance with established sampling techniques. Starting from a flat prior distribution Nested Sampling outperforms the Vegas algorithm and achieves results comparable to a dedicated multi-channel importance sampler. We outline possible approaches to combine Nested Sampling with non-flat prior distributions to further reduce the variance of integral estimates and to increase unweighting efficiencies.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.