https://doi.org/10.1140/epjc/s10052-021-09685-6
Regular Article - Theoretical Physics
Maxwell-modified metric affine gravity
Department of Physics, Kocaeli University, 41380, Kocaeli, Turkey
Received:
26
April
2021
Accepted:
24
September
2021
Published online:
12
October
2021
We present a gauge formulation of the special affine algebra extended to include an antisymmetric tensorial generator belonging to the tensor representation of the special linear group. We then obtain a Maxwell modified metric affine gravity action with a cosmological constant term. We find the field equations of the theory and show that the theory reduces to an Einstein-like equation for metric affine gravity with the source added to the gravity equations with cosmological constant contains linear contributions from the new gauge fields. The reduction of the Maxwell metric affine gravity to Riemann–Cartan one is discussed and the shear curvature tensor corresponding to the symmetric part of the special linear connection is identified with the dark energy. Furthermore, the new gauge fields are interpreted as geometrical inflaton vector fields which drive accelerated expansion.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3