https://doi.org/10.1140/epjc/s10052-021-09123-7
Regular Article - Theoretical Physics
Gravitational waves in Brans–Dicke theory with a cosmological constant
1
Department of Physics, Faculty of Sciences, Istanbul University, 34134, Istanbul, Turkey
2
Department of Physics, Faculty of Arts and Sciences, Marmara University, 34722, Istanbul, Turkey
Received:
14
January
2021
Accepted:
2
April
2021
Published online:
17
April
2021
Weak field gravitational wave solutions are investigated in Brans–Dicke (BD) theory in the presence of a cosmological constant. In this setting the background geometry is not flat but asymptotically de-Sitter. We investigate the linearised field equations, and their gravitational wave solutions in a certain gauge choice. We will show that this theory leads to massless scalar waves as in original BD theory and in contrast to massive BD theory. The effects of these waves on free particles and their polarization properties are studied extensively and effects of the cosmological constant is analyzed in these phenomena in detail. The energy flux of these waves are also discussed in this background. By analyzing this flux, we obtain a critical distance where the waves cannot propagate further, which extends Cosmic no Hair Conjecture (CNC) to BD theory with a cosmological constant.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3