https://doi.org/10.1140/epjc/s10052-021-08880-9
Regular Article – Theoretical Physics
The Higgs field and the Jordan Brans Dicke cosmology
Department of Physics, Bogazici University, Bebek, Istanbul, Turkey
Received:
27
August
2020
Accepted:
13
January
2021
Published online:
21
January
2021
We investigate a field theoretical approach to the Jordan–Brans–Dicke (JBD) theory extended with a particular potential term on a cosmological background by starting with the motivation that the Higgs field and the scale factor of the universe are related. Based on this relation, it is possible to come up with mathematically equivalent but two different interpretations. From one point of view while the universe is static, the masses of the elementary particles change with time. The other one, which we stick with throughout the manuscript, is that while the universe is expanding, particle masses are constant. Thus, a coupled Lagrangian density of the JBD field and the scale factor (the Higgs field), which exhibit a massive particle and a linearly expanding space in zeroth order respectively, is obtained. By performing a coordinate transformation in the field space for the reduced JBD action whose kinetic part is nonlinear sigma model, the Lagrangian of two scalar fields can be written as uncoupled for the Higgs mechanism. After this transformation, as a result of spontaneous symmetry breaking, the time dependent vacuum expectation value (vev) of the Higgs field and the Higgs bosons which are the particles corresponding to quantized oscillation modes about the vacuum, are found.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.