https://doi.org/10.1140/epjc/s10052-021-08837-y
Special Article – Tools for Experiment and Theory
Van der Meer scan luminosity measurement and beam–beam correction
Laboratoire Leprince-Ringuet (LLR), CNRS/IN2P3, École polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
Received:
15
December
2020
Accepted:
30
December
2020
Published online:
15
January
2021
The main method for calibrating the luminosity at Large Hadron Collider (LHC) is van der Meer scan where the beams are swept transversely across each other. This beautiful method was invented in 1968. Despite the honourable age, it remains the preferable tool at hadron colliders. It delivers the lowest calibration systematics, which still often dominates the overall luminosity uncertainty at LHC experiments. Various details of the method are discussed in the paper. One of the main factors limiting proton–proton van der Meer scan accuracy is the beam–beam electromagnetic interaction. It modifies the shapes of the colliding bunches and biases the measured luminosity. In the first years of operation, four main LHC experiments did not attempt to correct the bias because of its complexity. In 2012 a correction method was proposed and then subsequently used by all experiments. It was based, however, on a simplified linear approximation of the beam–beam force and, therefore, had limited accuracy. In this paper, a new simulation is presented, which takes into account the exact non-linear force. Depending on the beam parameters, the results of the new and old methods differ by . This needs to be propagated to all LHC cross-section measurements after 2012. The new simulation is going to be used at LHC in future luminosity calibrations.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3