https://doi.org/10.1140/epjc/s10052-020-08588-2
Regular Article – Theoretical Physics
Structure scalars and their evolution for massive objects in f(R) gravity
Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, 54590, Lahore, Pakistan
Received:
25
June
2020
Accepted:
20
October
2020
Published online:
12
January
2021
In this manuscript, the Riemann tensor is split orthogonally to get five scalar functions known as structure scalars which have significance to gain insight into the composition and structure of spherically symmetric self-gravitating objects. Certain stellar equations are then evaluated to gather information about physical characteristics of such astrophysical objects. These stellar equations are further written in terms of acquired structure scalars so that the basic properties such as pressure anisotropy and energy density inhomogeneity of the fluid under consideration can be explored. Also, we have explored few static spherically symmetric solutions to show significance of structure scalars in the background of f(R) gravity.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3