https://doi.org/10.1140/epjc/s10052-023-12352-7
Regular Article - Theoretical Physics
Compact stellar model with vanishing complexity under Vaidya–Tikekar background geometry
1
Department of Physics, Malda College, Malda, India
2
Department of Mathematics, Faculty of Applied Sciences, Durban University of Technology, 4000, Durban, South Africa
Received:
30
November
2023
Accepted:
10
December
2023
Published online:
7
January
2024
We make use of the condition of vanishing complexity, based on the current definition proposed by Herrera (Phys Rev D 97:044010, 2018), to find exact interior solutions to the Einstein equations for describing compact stellar objects. In the framework of general relativity, the complexity factor is an outcome of the orthogonal splitting of the Riemann tensor from which structure scalars are obtained. By using the Vaidya–Tikekar (V–T) metric ansatz (J Astrophys Astron 3:325, 1982) for the spacetime of a static spherically symmetric matter distribution, we model superdense, relativistic stars. The interior spacetime is matched to the exterior Schwarzschild solution across the boundary of the star where the radial pressure vanishes. The physical viability of the model has been tested following the current data corresponding to the pulsar . The stability of the model fulfilled the given criteria, namely the Tolman–Oppenheimer–Volkoff equation, the adiabatic index and the causality conditions.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.