https://doi.org/10.1140/epjc/s10052-020-08462-1
Regular Article – Theoretical Physics
Anisotropic neutron stars modelling: constraints in Krori–Barua spacetime
Centre for Theoretical Physics, The British University in Egypt, 11837, Sherouk City, Cairo, Egypt
Received:
21
April
2020
Accepted:
10
September
2020
Published online:
30
September
2020
Dense nuclear matter is expected to be anisotropic due to effects such as solidification, superfluidity, strong magnetic fields, hyperons, pion-condensation. Therefore an anisotropic neutron star core seems more realistic than an ideally isotropic one. We model anisotropic neutron stars working in the Krori–Barua (KB) ansatz without preassuming an equation of state. We show that the physics of general KB solutions is encapsulated in the compactness. Imposing physical and stability requirements yields a maximum allowed compactness for a KB-spacetime. We further input observational data from numerous pulsars and calculate the boundary density. We focus especially on data from the LIGO/Virgo collaboration as well as recent independent measurements of mass and radius of miilisecond pulsars with white dwarf companions by the Neutron Star Interior Composition Explorer (NICER). For these data the KB-spacetime gives the same boundary density which surprisingly equals the nuclear saturation density within the data precision. Since this value designates the boundary of a neutron core, the KB-spacetime applies naturally to neutron stars. For this boundary condition we calculate a maximum mass of 4.1 solar masses.
© The Author(s) 2020
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3