https://doi.org/10.1140/epjc/s10052-019-7601-y
Regular Article - Theoretical Physics
Continuous phase transition and microstructure of charged AdS black hole with quintessence
1
Department of Physics, Shanxi Datong University, 037009, Datong, China
2
Institute of Theoretical Physics, Shanxi Datong University, 037009, Datong, China
b
huaifan.li@stu.xjtu.edu.cn
huaifan999@sxdtdx.edu.cn
Received:
1
December
2019
Accepted:
30
December
2019
Published online:
22
February
2020
Previously, the Maxwell equal-area law has been used to discuss the conditions satisfied by the phase transition of charged AdS black holes with cloud of string and quintessence, and it was concluded that black holes have phase transition similar to that of vdW system. The phase transition depends on the electric potential of the black hole and is not the one between a large black hole and a small black hole. On the basis of this result, we study the relation between the latent heat of the phase transition and the parameter of dark energy, and use the Landau continuous phase transition theory to discuss the critical phenomenon of the black hole with quintessence and give the critical exponent. By introducing the number density of the black hole molecules, some properties of the microstructure of black holes are studied in terms of a phase transition. It is found that the electric charge of the black hole and the normalization parameter related to the density of quintessence field play a key role in the phase transition. By constructing the binary fluid model of the black hole molecules, we also discuss the microstructure of charged AdS black holes with a cloud of strings and quintessence.
© The Author(s) 2020
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3