https://doi.org/10.1140/epjc/s10052-025-14262-2
Regular Article - Experimental Physics
Improved and automated krypton assay for low-background xenon detectors with Auto-RGMS
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg, Germany
Received:
22
January
2025
Accepted:
1
May
2025
Published online:
26
May
2025
Ultra-sensitive quantification of trace radioactive krypton-85 (Kr) is essential for low-background experiments, particularly for next-generation searches of galactic dark matter and neutrino physics using xenon-based time projection chambers (TPCs). While the rare gas mass spectrometer (RGMS) represents the current state-of-the-art for krypton detection in the field, we are developing a fully automated system (Auto-RGMS) to overcome the limitations of its manual operation. Auto-RGMS incorporates a robust control system for rapid measurements and minimized systematic uncertainties. A primary goal is to reach detection limits in the low parts-per-quadrillion (ppq) range for natural krypton by improving the chromatography stage to enhance the separation of krypton from xenon. Investigations into various adsorbent materials identified two candidates. HayeSep Q offers a 12-fold improvement in chromatographic resolution for xenon/krypton separation compared to the previously used adsorbent. Alternatively, HayeSep D provides a more limited improvement in resolution while allowing a higher measurement frequency because of its moderate retention-induced contamination after each measurement. By automating krypton assays and achieving ppq sensitivity, Auto-RGMS will be an indispensable tool for next-generation detectors, maximizing their scientific potential.
© The Author(s) 2025
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.