https://doi.org/10.1140/epjc/s10052-025-13936-1
Regular Article - Theoretical Physics
Exploring multi-step electroweak phase transitions in the 2HDM+
1
School of Physics, Shandong University, 250100, Jinan, Shandong, China
2
Department of Physics, Yantai University, 264005, Yantai, Shandong, China
3
School of Physics, Zhengzhou University, 450000, Zhengzhou, China
4
School of Physics, Henan Normal University, 453007, Xinxiang, China
Received:
25
October
2024
Accepted:
14
February
2025
Published online:
12
March
2025
Multiple electroweak phase transitions occurring sequentially in the early universe can give rise to intriguing phenomenology, compared to the typical single-step electroweak phase transition. In this work, we investigate this scenario within the framework of the two-Higgs-doublet model with a pseudoscalar, utilizing the complete one-loop finite-temperature effective potential. After considering relevant experimental and theoretical constraints, we identify four distinct types of phase transitions. In the first case, only the configuration of the CP-even Higgs acquires a non-zero value via a first-order or a cross-over electroweak phase transition, leading to electroweak symmetry breaking. In the remaining three cases, the pseudoscalar fields can obtain vacuum expectation values at different phases of the multi-step phase transition process, leading to the spontaneous breaking of the CP symmetry. As the temperature decreases, the phase shifts to the vacuum observed today via first-order electroweak phase transition, at this point, the vacuum expectation value of the pseudoscalar field returns to zero, restoring the CP symmetry. Finally, we compare the transition strength and the stochastic gravitational wave background generated in the four situations along with the projected detection limits.
© The Author(s) 2025
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.