https://doi.org/10.1140/epjc/s10052-025-13912-9
Regular Article - Theoretical Physics
The existence and distribution of photon spheres near spherically symmetric black holes: a geometric analysis
College of Science, Chongqing University of Technology, Banan, 400054, Chongqing, China
Received:
18
December
2024
Accepted:
10
February
2025
Published online:
17
February
2025
Photon sphere has attracted significant attention since the capture of black hole shadow images by Event Horizon Telescope. Recently, a number of studies have highlighted that the number of photon spheres and their distributions near black holes are strongly constrained by black hole properties. Specifically, for black holes with event horizons and proper asymptotic behaviors, the number of stable and unstable photon spheres satisfies the relation In this study, we provide a new proof on this relation using a geometric analysis, which is carried out using intrinsic curvatures in the optical geometry of black hole spacetimes. Firstly, we demonstrate the existence of photon spheres near black holes assuming most general asymptotic behaviors (asymptotically flat black holes, asymptotically de-Sitter and anti-de-Sitter black holes). Subsequently, we prove that the stable and unstable photon spheres near black holes must be one-to-one alternatively separated from each other, such that each unstable photon sphere is sandwiched between two stable photon spheres (and each stable photon sphere is sandwiched between two unstable photon spheres). Our analysis in this study is applicable to any spherically symmetric black hole spacetimes.
© The Author(s) 2025
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.