https://doi.org/10.1140/epjc/s10052-024-13703-8
Regular Article - Theoretical Physics
Stability of evolving cluster of stars and exotic matter
1
Department of Mathematics, University of Management and Technology, Johar Town Campus, 54782, Lahore, Pakistan
2
Institute of Chemical Engineering and Technology, University of the Punjab, Quaid-e-Azam Campus, 54590, Lahore, Pakistan
3
School of Mathematical Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
Received:
11
October
2024
Accepted:
7
December
2024
Published online:
30
December
2024
This paper discusses the phenomenon of evolving spherically symmetric cluster of stars in the presence of an exotic matter. To discuss evolutionary mechanism, we use the Starobinsky model of f(R) gravity as exotic matter and the structure scalars as evolutional parameters. We study various evolution modes such as isotropic pressure, quasi-homologous evolution, density homogeneity, and geodesic nature. The stability of homogeneous density of baryonic and non-baryonic matter is discussed using dissipation, tidal forces, anisotropic pressures, expansion and shear-effects. It is observed that the dark matter has remarkable impact on the evolutionary changes. Also, it is shown that the dissipation factor produces density inhomogeneity in expanding clusters with shear effects. We observe that high curvature geometry enhances quasi-homologous evolution in the presence of shear. We use star Her X-1 as test star to discuss physical behavior of Starobinsky model. It is found that the density of dark matter overcomes the density of matter for large values of dark matter parameter n.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.