https://doi.org/10.1140/epjc/s10052-024-13526-7
Regular Article
New classes of charged 4D EGB spacetimes with vanishing Weyl curvature
Astrophysics Research Centre, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X54001, 4000, Durban, South Africa
a
abdelghani.errehymy@gmail.com
Received:
5
August
2024
Accepted:
20
October
2024
Published online:
15
November
2024
The configuration of a perfect fluid distribution in an electric field under the influence of higher curvature geometric effects introduced through the Gauss–Bonnet invariants is studied in the 4 dimensional Glavan–Lin gravity formulation. It is found that whereas a constant spatially directed gravitational potential gives isothermal behaviour in the standard theory, this is not the case when extra curvature is present in general. A physically viable stellar model is constructed by assuming the Finch–Skea potential. The geometry and electrodynamics are well behaved being regular throughout the distribution including the centre. The model passes stability tests such as the Chandrasekar adiabatic stability criterion and causality. Additionally all energy conditions are satisfied within the star. We compare the performance of the model with its Einstein counterpart and observe that the higher curvature exerts a notable influence on all the physical properties of the star.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.