https://doi.org/10.1140/epjc/s10052-024-13524-9
Regular Article
Destroying the event horizon of cold dark matter-black hole system
College of Physics, Guizhou University, 550025, Guiyang, China
Received:
29
July
2024
Accepted:
20
October
2024
Published online:
18
November
2024
Since the weak cosmic censorship conjecture was proposed, research on this conjecture has been ongoing. This paper explores the conjecture in black holes that are closer to those existing in the real universe (i.e., rotating black holes enveloped by dark matter). In this paper, we obtained a first-order corrected analytical solution for the black hole event horizon through an approximate solution. The validity of the first-order corrected analytical solution will be provided in the appendix. We conduct our study by introducing a test particle and a scalar field into the black hole. Our conclusions show that, in extremal case, both a test particle and a scalar field can disrupt the event horizon of the Kerr-like black hole; in near-extremal case, both a test particle and a scalar field can disrupt the event horizon of the Kerr-like black hole. When cold dark matter is not considered, the conclusion is consistent with previous research.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.