https://doi.org/10.1140/epjc/s10052-022-10709-y
Regular Article - Theoretical Physics
Testing the weak cosmic censorship conjecture for extremal magnetized Kerr–Newman black holes
Department of Physics, Beijing Normal University, 100875, Beijing, China
Received:
9
June
2022
Accepted:
12
August
2022
Published online:
30
August
2022
We test the weak cosmic censorship conjecture for magnetized Kerr–Newman spacetime via the method of injecting a test particle. Hence, we need to know how the black hole’s parameters change when a test particle enters the horizon. This was an unresolved issue for non-asymptotically flat spacetimes since there are ambiguities on the energies of black holes and particles. We find a novel approach to solve the problem. We start with the “physical process version” of the first law, which relates the particle’s parameters with the change in the area of the black hole. By comparing this first law with the usual first law of black hole thermodynamics, we redefine the particle’s energy such that the energy can match the mass parameter of the black hole. Then, we show that the horizon of the extremal magnetized Kerr–Newman black hole could be destroyed after a charged test particle falls in, which leads to a possible violation of the weak cosmic censorship conjecture. We also find that the allowed parameter range for this process is very small, which indicates that after the self-force and radiation effects are taken into account, the weak cosmic censorship conjecture could still be valid. In contrast to the case where the magnetic field is absent, the particle cannot be released at infinity to destroy the horizon. And in the case of a weak magnetic field, the releasing point becomes closer to the horizon as the magnetic field increases. This indicates that the magnetic field makes the violation of the cosmic censorship more difficult. Finally, by applying our new method to Kerr–Newman–dS (AdS) black holes, which are well-known non-asymptotically flat spacetimes, we obtain the expression of the particle’s energy which matches the black hole’s mass parameter.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.