https://doi.org/10.1140/epjc/s10052-024-12920-5
Regular Article - Theoretical Physics
QCD effects in electroweak
production at current and future hadron colliders
1
Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076, Tübingen, Germany
2
CERN, Theoretical Physics Department, 1211, Geneva 23, Switzerland
Received:
25
March
2024
Accepted:
15
May
2024
Published online:
8
June
2024
We present an update of an existing implementation of WZjj production via vector-boson scattering in the framework of the POWHEG BOX program. In particular, previously unavailable semi-leptonic and fully hadronic decay modes of the intermediate vector bosons are provided, and operators of dimension six in an effective-field theory approach to account for physics beyond the Standard Model in the electroweak sector are included. For selected applications phenomenological results are provided to illustrate the capabilities of the new program. The impact of the considered dimension-six operators on experimentally accessible distributions is found to be small for current LHC energies, but enhanced in the kinematic reach of a potential future hadron collider with an energy of 100 TeV. The relevance of fully accounting for spin correlations and off-shell effects in the decay system is explored by a comparison with results obtained with the MadSpin tool that are based on an approximate treatment of the leptonic final state resulting from vector boson scattering processes. For selected semi-leptonic and hadronic decay modes we demonstrate the sensitivity of realistic signal selection procedures on QCD corrections and parton-shower effects.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.