https://doi.org/10.1140/epjc/s10052-024-12853-z
Regular Article - Theoretical Physics
Observational signatures of charged rotating traversable wormhole: shadows and light rings with different accretions
Department of Mathematics, COMSATS University Islamabad, Lahore-Campus, 54000, Lahore, Pakistan
a
rabiasaleem@cuilahore.edu.pk
Received:
2
December
2023
Accepted:
25
April
2024
Published online:
9
May
2024
In this work, we investigate the optical appearance of qualitatively new observational features of accretion disk images around the charged rotating traversable wormhole (TWH) space-time for different spin, throat, and charge values. To accomplish this, we first consider the Hamilton–Jacobi method to derive the geodesic equations for the motion of photons and study the effects of parameters on the photon orbit in the observer’s sky. We found that each parameter affects the size and shape of the wormhole (WH) shadow and flatness is observed in the shadow because of spin and other parameters. To produce shadow images of sufficient visual quality but within manageable computational times, we adopt the ray-trace procedure and characterize the significant features of light trajectories on the observer’s screen, depending on the interaction between the space-time structure and the accretion disk. In addition, we consider the static spherically symmetric accretion flow model to observe the specific intensity around the traversable WH space-time geometry. It is found that the intensity and positions of the photon ring vary with respect to the involved parameters. In future observation, this type of study may provide a fertile playground to test the nature of compact objects, specifically the WH in the strong-field regime.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.