https://doi.org/10.1140/epjc/s10052-024-12794-7
Regular Article - Theoretical Physics
The Kerr–Bumblebee exact massive and massless scalar quasibound states and Hawking radiation
Department of Physics, Mahidol University, 272 Phraram 6 Street, Ratchathewi, 10400, Bangkok, Thailand
Received:
28
February
2024
Accepted:
9
April
2024
Published online:
23
April
2024
In this letter, we will focus on the Klein–Gordon equation with rotating axially symmetric black hole solution of the Einstein–Bumblebee theory, so called the Kerr–Bumblebee black hole, as its 3 + 1 background space-time. We start with constructing the covariant Klein–Gordon equation component by component and with the help of the ansatz of separation of variables, we successfully separate the polar part and found the exact solution in terms of Spheroidal Harmonics while the radial exact solution is discovered in terms of the Confluent Heun function. The quantization of the quasibound state is done by applying the polynomial condition of the Confluent Heun function that is resulted in a complex-valued energy levels expression for a massive scalar field, where the real part is the scalar particle’s energy while the imaginary part represents the quasibound stats’s decay. And for a massless scalar, a pure imaginary energy levels is obtained. The quasibound states, thus, describe the decaying nature of the relativistic scalar field bound in the curved Kerr–Bumblebee space-time. We also investigate the Hawking radiation of the Kerr–Bumblebee black hole’s apparent horizon via the Damour–Ruffini method by making use the obtained exact scalar’s wave functions. The radiation distribution function and the Hawking temperature are successfully obtained.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.