https://doi.org/10.1140/epjc/s10052-024-12600-4
Regular Article - Theoretical Physics
Exact massive and massless scalar quasibound states solutions of the Einstein–Maxwell-dilaton (EMD) black hole
Department of Physics, Mahidol University, 272 Phraram 6 Street, Ratchathewi, 10400, Bangkok, Thailand
Received:
5
February
2024
Accepted:
21
February
2024
Published online:
4
March
2024
In this letter, we will focus on the Klein–Gordon equation with static spherically symmetric black hole solution of the Einstein–Maxwell-dilaton (EMD) theory as its 3+1 background space-time. The Klein–Gordon equation represents quasibound states of both massive and massless scalar fields which are localized in the black hole potential well. By using the covariant Klein–Gordon equation, we investigate the behaviour of both massive and massless scalars in the EMD black hole space-time. We successfully exactly solved the relativistic wave equation and are going to present the novel exact results in this letter. The exact solutions, the wave functions and the energy levels, describe the decaying nature of the relativistic scalar field bound in the curved space-time. The massive scalar quasibound state has complex-valued energy levels where the real part is the massive scalar’s energy while the imaginary part represents the decay. For the massless scalar quasibound state, pure imaginary energy levels are discovered. In this letter, by using the obtained exact scalar particle’s wave functions, we also consider the Hawking radiation of the apparent horizon of the EMD black hole that is calculated via Damour–Ruffini method. In principle, the investigation of black hole quasibound states could provide possibility for laboratory testing of effects whose nature are absolutely related with quantum effects in gravity.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.