https://doi.org/10.1140/epjc/s10052-024-12758-x
Regular Article - Theoretical Physics
Abnormal threshold behaviors of photo-pion production off the proton in the GZK region
1
School of Physics, Peking University, 100871, Beijing, China
2
Center for High Energy Physics, Peking University, 100871, Beijing, China
3
Collaborative Innovation Center of Quantum Matter, Beijing, China
Received:
4
January
2024
Accepted:
30
March
2024
Published online:
18
April
2024
The cosmic-ray spectrum structures help to study the acceleration and propagation mechanism of ultra-high energy cosmic rays, and these structures were predicted to culminate in a cut-off, named the Greisen–Zatsepin–Kuzmin (GZK) cut-off, near as a result of the inelastic interaction of protons with the
black body radiation. The confirmation of the existence of GZK cut-off was tortuous, leading to activities to explore new physics, such as the cosmic-ray new components, unidentified cosmic-ray origins, unknown propagation mechanism and the modification of fundamental physics concepts like the tiny Lorentz invariance violation (LV). The confirmation of the GZK cut-off provides an opportunity to constrain the LV effect. We use a phenomenological framework to restudy the GZK mechanism under the Planck scale deformation of the proton and pion dispersion relations. Restudying the photon induced pion production of the proton
, we predict abnormal threshold behaviors of this reaction under different LV modifications. Therefore we can study the LV effects not only from the conventional GZK cut-off, but also from potentially threshold anomalies of the pion production process. We divide the LV parameter space into three regions, and analyze the constraints from current observations in each region. The current observations have set strict restrictions on a certain LV region. However, for others LV regions, further experimental observations and theoretical researches are still needed, and we also find survival space for some theoretical explorations that permit specific LV effects.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.