https://doi.org/10.1140/epjc/s10052-024-12697-7
Regular Article - Theoretical Physics
Thermal leptogenesis in nonextensive cosmology
Department of Physics, Shahid Beheshti University, PO Box 19839-63113, Tehran, Iran
Received:
16
December
2023
Accepted:
18
March
2024
Published online:
30
March
2024
Thermal leptogenesis is a mechanism that explains the observed asymmetry between matter and antimatter in the early universe. In this study, we review the impact of nonextensive Tsallis statistical mechanics on the early universe and study its effect on thermal leptogenesis. The study has found that the use of nonextensive statistical mechanics can affect the production of baryon asymmetry in thermal leptogenesis by modifying the equilibrium abundance of particles, decay, and washout parameters. Also, we show that nonextensive statistical mechanics potentially reduce the required right-handed neutrino mass scale.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.