https://doi.org/10.1140/epjc/s10052-024-12606-y
Letter
Gravitational radiation of a spherically symmetric source in f(R)-gravitation
Mathematical-, High Energy- and Astro-Physics Group, CTP, Institute of Physics, Vietnam Academy of Science and Technology (VAST), 10 Dao Tan, Ba Dinh, Hanoi, Viet Nam
Received:
18
August
2023
Accepted:
25
February
2024
Published online:
22
March
2024
It is shown that Birkhoff’s theorem for the general theory of relativity is overcome in the f(R)-theory of gravitation. That means, the f(R)-theory of gravitation, unlike Einstein’s general theory of relativity, does not forbid gravitational radiation from a spherically symmetric source (whether stationary or non-stationary). As a consequence, in the f(R)-theory a spherically symmetric gravitational deformation (e.g., collapse/expansion or pulsation) could emit gravitational waves (of tensor- and scalar polarization modes), a phenomenon impossible in the general relativity. A test model is examined and it turns out that the gravitational radiation is strongest when the surface of the deforming object is in the vicinity of the (modified) event horizon, even suddenly flares up just outside the latter. In this letter, within the f(R)-theory of gravitation, a gravitational wave equation and a formula for the gravitational emission power are derived. These formulae, along with searching for signals, can be used for the experimental test of the f(R)-theory. In general, including the spherically symmetry case, gravitational radiation of both tensor- and scalar polarization modes are allowed, although under some circumstance the contribution of scalar modes is strongly suppressed.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.